HashMap

map是一种键值映射的数据结构,键不允许重复

介绍一些java当中实现map的关键的几个方法,包括get,put,resize

AbstractMap

该类是其他具体map类的父类

有些子类允许键为null,例如HashMap,有些不允许例如Hashtable,ConcurrentHashMap,因此出现了以下的方法
代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public boolean containsKey(Object key) {
Iterator<Map.Entry<K,V>> i = entrySet().iterator();
if (key==null) {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (e.getKey()==null)
return true;
}
} else {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (key.equals(e.getKey()))
return true;
}
}
return false;
}

HashMap

HashMap是一个很常用很重要的工具类,看看它是怎么实现的

它是由数组+链表+红黑树实现的,也就是解决hash的冲突的办法是链地址法

数组的长度永远是2的幂(自有作用)

允许键值null

基本成员属性

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
//可序列化和克隆
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
//默认初始化数组长度为16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//数组最大长度
static final int MAXIMUM_CAPACITY = 1 << 30;
//负载因子,用来判断是否需要扩容
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//大于等于这个数会将链表转化为红黑树提高效率
static final int TREEIFY_THRESHOLD = 8;
//小于等于这个数会将红黑树转化为链表
static final int UNTREEIFY_THRESHOLD = 6;
//可以树化的最短的数组长度,否则就扩数组
static final int MIN_TREEIFY_CAPACITY = 64;
//一个Node数组,在使用的时候才初始化,并且长度总是2^m,方便计算下标(len-1)&hash
transient Node<K,V>[] table;

transient Set<Map.Entry<K,V>> entrySet;
//键值对的个数,与数组的长度不一样
transient int size;
//更改次数,在迭代时判断map是否被更改
transient int modCount;
//阈值
int threshold;
final float loadFactor;

}

Node类

键值结构在map里是由Node来存储的

1
2
3
4
5
6
7
8
9
10
11
12
13
static class Node<K,V> implements Map.Entry<K,V> {
//Node的hash值
final int hash;
final K key;
V value;
Node<K,V> next;

//让键值都参与hash运算,混合避免冲突
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

}

HashMap具体的方法

key的hash值:高16位与低16为进行亦或运算

1
2
3
4
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

求不小于一个数的最小的2^n,例如num=15,返回16;num=16,返回16。

1
2
3
4
5
6
7
8
9
10
11
12
13
static final int tableSizeFor(int cap) {
//减一是考虑到cap是2^m次方的情况
int n = cap - 1;
//使最高位的1与第二位或,最高的位为...00011....
n |= n >>> 1;
//...01111....
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
//此时从最高位开始其后全是1,n=2^m-1
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

构造函数(多种),只介绍一种

1
2
3
4
5
6
7
8
9
10
11
12
13
//可以指定cap或加载因子
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}

获取Node的方法:流程是:先判断数组相应位置是否为空,在判断第一个节点,再根据是树还是链表查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//检查table不为空,table长度大于0,tablep对应的key的的位置不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//先判断第一个Node,通过判断hash值(hash值可能相等)、key是否相同或相等
if (first.hash == hash &&
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//若是树,就通过树来查找,反之通过链表查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

put Node的方法,通过尾插法;如果没有初始化先初始化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
//关于参数
//onlyIfAbsent if true, don't change existing value
//evict if false, the table is in creation mode.
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//先检查是否需要resize()
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//延迟初始化
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//e是要更改的节点
Node<K,V> e; K k;
//总是先判断第一个节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
//尾插法,可能需要转化为树
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//key已存在的情况,记录下该node
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果存在旧的key value,返回oldValue
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//表示已经更改map
++modCount;
//扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
//不存在旧值,只是添加,返回null
return null;
}

扩容:一个table[i]上的节点扩容后只可能在两个位置,一个是原位置,一个是oldCap+i
先更改长度,在通过遍历原table,添加新table

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//cap,thr都*=2,包括初始化
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//移动Node的具体逻辑
if (oldTab != null) {
//遍历数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//只有一个Node,直接移动一个即可
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//执行链表rehash的逻辑
else {
//厉害的一段代码,记住cap是2^n
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//同一个table[j]下的node只可能在两个位置
//实际上是一段位运算根据2^n和2^n-1的特殊性质,把nodes分为两个链表,一段在原位置,一段在原位置+oldCap
//判断为cap二进制中的那一位对应的key的hash是否为1,如果为不为1,表示该key的角标不变
//反之,该值为1,则该node在新table中的位置需要+oldcap
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
文章作者: gentlezuo
文章链接: http://gentlezuo.github.io/2019/03/31/HashMap/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 gentlezuo的博客